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Introduction

Dataset

he working dataset is restricted to proteins with binding pockets large enough to
nave interesting water networks whilst not being too large. Data is sourced from the
Protein Data Bank, with an appropriate filtering process to select for proteins with
igands present such that their binding pockets are large enough to have such a
network. This is calculated by checking for the distance from the ligand body to the
nearest protein residues being under a threshold of four Angstroms. Such filtering is
required due to the nature of water molecule behavior in proteins, as hydrostatic
interactions vary based on the number of molecules and whether they have contact
with the greater outside surface. Hence calculations of the solvent accessible surface
area as a filter.

Architecture

A diffusion model was chosen for this project due its recent successes in image
generation over GAN (generative adversarial network) models [HJA20], and for
protein structure design [Chu+23]. To generate sequence data for the protein, a
language model is leveraged at the beginning to analyze the proposed sequence data,
specifically FAIR ESM2 [Riv+19]. This step is not done during the training process
in order to ensure biologically accurate proteins. Such a diffusion model works by
learning to reverse a diffusion process on a schedule: the mathematical formulation is
described below.

Formulation

The initial analysis is performed by a language model to semantically analyze the
primary structure (that is, the sequence of amino acids) proposed for engineering and
generate its 3D coordinates in space for further analysis, which is done via the
following process of diffusion.

A diffusion model has two processes: a forward process and a backward process. The
parameterization of the forward process can be described in relatively simple terms:
given a variance schedule ;, we have
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he reverse procecess is what the model learns, more specifically the joint distribution

PH(XO 3 T) = P(XT) H PH(Xt—l‘Xt) = P(XT) HN(Xt—li ,UH(Xt; t), U@(Xt; t)),

where pure Gaussian noise is denoted by p(x7) = M(x7,0,1). [HJA20]
During the training process, we optimize the log likelihood: we seek to minimize
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The end result is a model that can properly reverse the diffusion stage processes
described here. These models have shown that they are more effective than

Generative Adversarial Networks (GANSs) for image data and have been featured in
protein design pipelines.
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Proteins have many essential biological functions and often have their activity regulated by small binding molecules called ligands. The pockets, or zones, which these ligands bind are of
narticular structural interest in protein engineering. Furthermore, water molecules have a functional impact on stabilizing these pocket structures. We seek to develop an engineering
nipeline to facilitate binding arbitrary ligands to proteins through engineering new pockets, leveraging artificial intelligence techniques that have revolutionized the field in the last decade.

Neural Network

In order to actually learn the reverse process we must train a neural network to
approximate the score (the gradient of the log density of the distribution p(x)).
Leaning on previous implementations [Chu+23], we use an U-Net like architecture as
the input and output dimensionality must be identical. When working with protein
data, we represent the proteins themselves as point clouds in R>.
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Further Direction

-urther modifications will be made to the model in order to integrate it into design
nipelines, such as integrating it into an iterative design process to view stages of
water networks in the process. This may be accomplished by leveraging existing
sidechain design processes such as ProteinMPNN[Dau+22]. Furthermore this
pipeline must be verified on experimental data to ensure real-world applications.
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