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Abstract

In this article, we will describe grid diagrams of knots and their applications to more
general knot theory. In particular, we describe grid moves and Cromwell’s Theorem, which
relates grid diagrams by knot class.
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1 Introduction

Grid diagrams are a presentations of link diagrams, which are a combinatorial way to represent
links.1 More recently, they have found much use as a combinatorial interpretation of knot Floer
homology, which categorifies the Alexander polynomial. The main reference for this section is
[OSS15].

Definition 1.1 (Grid Diagrams). A (planar) grid diagram G is an n × n planar grid that
satisfies the following properties:

i Exactly n squares are marked with a and another n are marked with a .

ii Each row has a single square marked with a and another marked with a .

iii Each column has a single square marked with a and another marked with a .

iv No square is marked with both.

The number n above is the grid number of G. To obtain a specific oriented link L from G,
we use the following procedure:

Algorithm 1.2 (Link Recovery). Start with the diagram G.

i Connect the marked squares to the marked squares in each column with oriented
segments.

∗Columbia University, Mathematics and Computer Science.
1In particular, this facilitates the input of links into computer programs for algorithmic processing and even
machine learning, see [Guk+20] as an example.
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Figure 1: A grid diagram for the right handed trefoil T (2, 3) and the Hopf Link σ̂2
1.

ii Perform the same procedure for rows. Vertical segments should always cross over hori-
zontal ones.

iii The resulting diagram is the oriented link diagram L represented by G.

Refer to fig. 1 for an example of grid diagrams for specified links. This algorithm naturally
leads to the question of whether every oriented link can be represented by a grid diagram, which
is true.

Theorem 1.3. Every oriented link (embedded into S3) can be represented by a grid diagram.

Proof. Given an oriented diagram of a link L, we can approximate it with a piecewise linear
embedding2, and perturb it such that there are only horizontal and vertical segments. Since by
conventions all over-crossings in a grid diagram are by vertical segments, we must modify any
horizontal over-crossings as follows: These moves produce an isotopic diagram to the original

Figure 2: Modifying the horizontal crossing to make it a vertical crossing.

link diagram. Now, perturb the diagram again such that different vertical segments are not
collinear, and repeat this for horizontal segments. Now, mark bends in the segments by and
such that vertical segments point from to , and horizontal segments point from to .
Once this process is finished, the result is a valid grid diagram for the original oriented link

L.

Note the piecewise linear embedding in fig. 3. While we have given connecting segments
between the circles in the grid diagrams (and will continue to do so to illustrate operations on
the underlying knot), they are not necessary. Also note the inherent oriented nature of grid
diagrams: every segment is oriented from a to a horizontally, and the reverse for vertical
strands.

2We do not lose any information in this process.
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Figure 3: An example of the process described in the proof of theorem 1.3.

2 Grid Moves and Cromwell’s Theorem

Much like with knot diagrams, we can define moves between two grid diagrams that preserve
the underlying isotopy of the knots they represent. These are called grid moves.

We can define a notion of height of a row (respectively, column) by considering the intervals
defined on the spaces [0, n]×{0} and {0}× [0, n], where n is the grid number of a grid diagram
G. Notice that for each row (and analogously, column), the and the bound a subinterval
of [0, n].

Definition 2.1 (Commutation). Let G be a grid diagram. Consider two consecutive rows
(respectively, columns) of G. If the height intervals of these rows are disjoint, one is strictly
contained in the other, or the endpoint of one interval is the beginning of the other, then
interchanging these rows is called a row commutation (respectively, column commutation)
move. Refer to fig. 4 for an example.
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Figure 4: A column commutation. Note that this is a RII move on the underlying knot.

Much like Markov moves in braid theory, we have the notion of “introducing a kink” into a
grid diagram as well.

Definition 2.2 (Stabilization). Let G be a grid diagram with grid number n. A grid diagram
G′ is a stabilization of G if it can be obtained by splitting a row and a column into two and
has grid number n + 1, as follows: choose some marked square in G and erase the marking,
along with its corresponding marked square in that row and the corresponding marked square
in its column. Now split the row and column into two by adding a new horizontal and vertical
line. After inserting new valid markings, the resulting diagram G′ is a stabilization of G.

Refer to fig. 5 for examples of stabilization. The inverse of a stabilization is called a desta-
bilization.

Definition 2.3 (Grid Moves). The row and column commutations, stabilization, and destabi-
lization are termed as grid moves.

We can now state Cromwell’s Theorem.
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Figure 5: Stabilization.

Theorem 2.4 (Cromwell [Cro95]). Two grid diagrams represent isotopic links if and only if
there is a finite sequence of grid moves that transforms one into the other.

One way to prove this is to show that grid moves are sufficient to generate the Reidemeister
moves on their underlying knot. While there is some more subtlety to the proof, we can indeed
generate Reidemeister moves from grid moves.
Notice that row and column commutation are the direct analogue of RII moves for grid

diagrams, and hence generate RII moves on the underlying knot.
An RI move can be generated by a composition of a stabilization and a commutation as

follows:

Figure 6: Generating an RI move by composing a stabilization and a commutation.

We can also generate RIII moves using commutation.

Figure 7: Generating an RIII move from a commutation.

3 Presentation of Knot Group

One application of grid diagrams is giving a simple presentation of the knot group π1(S
3 \K).

Definition 3.1 (Knot Group). The fundamental group π1(S
3 \K) of the complement of a knot

K ↪→ S3 is known as the knot group. It is a link invariant.
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To determine a presentation of the knot group from a grid diagram G with grid number n,
we label the vertical columns in order from left to right as c1, c2, . . . , cn. Then, we label the
vertical lines separating the rows of G as r1, r2, . . . , rn−1 from top to bottom. These correspond
to relations ri given by the order in which the ri meet the ci from left to right.

Theorem 3.2 ([OSS15]). The presentation

⟨c1, c2, . . . , cn | r1, r2, . . . , rn−1⟩

is a presentation of the group π1(S
3 \K).

To illustrate this, consider the (alternative to fig. 1) diagram of the right-handed trefoil T (2, 3)
in fig. 8. Checking the intersections, we see that we have a presentation

⟨c1, c2, c3, c4, c5 | c1c3, c1c2c3c4, c1c2c4c5, c2c5⟩.

This can be simplified. Noting that c3 = c−1
1 , c2 = c−1

5 , we can see that c4 = c1c
−1
2 c−1

1 . Then
we can simplify the presentation to

⟨c1, c2 | c1c2c1 = c2c1c2⟩ ⟨a, b | a3 = b2⟩.c1c2 7→ a

c2c1c2 7→ b

Notice that the expression on the left is the Wirtinger presentation of π1(S
3 \ T (2, 3)).

c1

r4
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r2
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c2c5

Figure 8: Computing the presentation of π1(S
3 \ T (2, 3)).

4 Monotonic Simplification

One interesting result is the following theorem of Dynnikov:

Theorem 4.1 (Dynnikov [Dyn06]). All grid diagrams of the unknot can be simplified mono-
tonically.

This result is not true for knot diagrams in general3. To prove this, Dynnikov uses arc-
presentations, which are a related concept to grid diagrams.
In particular, this means that the unknotting problem can be solved in polynomial time when

done on grid diagrams.

3In fact, it is often the case that more crossings must be introduced into a diagram before it can be further
simplified.
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