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For those of you I haven’t met before...

Here’s a few things about me:

I Hi! I’m Pranav!

I I’ll be a freshman in college this fall.

I My favorite math subject is combo!

I Check me out at https://pranavkonda.com!

But that’s enough about me, what you’re really here for is the
math.
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To me
To what we’re doing today

Some background about posets and notation

I Today we’ll be learning about partially ordered sets.

I We also call them posets for short.

I They have cool connections to other areas of combo, like PIE.

I Since there’s going to be some slightly advanced theory, let
me know if I need to slow down or explain something in more
detail.

The set {1, 2, . . . , n} is going to be denoted by [n].
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Binary Relations

As you probably already know, the Cartesian Product of two sets A
and B, A× B, is the set

{(a, b) : a ∈ A, b ∈ B}.

Definition (Binary Relation)

A binary relation R over two sets A and B is a subset of A× B.
We think about (a, b) as aRb, where we’re relating a to b.
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Posets

Now we’re ready to define a poset! A poset is a set P, along with
a binary relation ≤ that satisfies the following properties:

I Reflexivity: For any s ∈ P, s ≤ s.

I Antisymmetry: If t ≤ s and s ≤ t, then s = t.

I Transitivity: If s ≤ u and u ≤ t, then s ≤ t.

Just like regular less-than, s < t indicates that s 6= t. Same for
greater than signs.
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Posets

The “crux” of what makes the poset a partially ordered set is that
for any two elements in P, it’s not necessary for s ≤ t or t ≤ s to
hold! We have formal words for this (let s, t ∈ P):

I If s ≤ t or t ≤ s, then we say s and t are comparable.

I Otherwise, we say s and t are incomparable.

Sometimes, our set and partial order will only have comparable
elements, in which case we call it a total order (like (R,≤) for
example).
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The n chain

I Suppose n is a positive integer. Then the set [n] with the
regular less-than relation forms a poset, n, which we call the
n-chain. It’s pretty easy to verify that this satisfies reflexivity,
antisymmetry, and transitivity.

I We’ll see why it’s called a chain shortly, but we need to define
a few things first.
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Power sets

Your turn to prove something!

Problem

Let S be a set. Prove that (P(S),⊆) is a poset.
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Isomorphism

As expected with any mathematical object, we have some notion
of poset isomorphism, or an order-preserving bijection. We say two
posets P and Q are isomorphic if there’s some map φ : P → Q
such that

s ≤ t ⇐⇒ φ(s) ≤ φ(t).

Pretty generic definition of isomorphism.
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Subposets

Subposets are a bit wonky, since there are two ways we can define
one. Since we will almost always use only one kind, we’re going to
go through that.

Definition (Induced subposet)

Let P be a poset. Then Q is an induced subposet of P if for
s, t ∈ Q, s ≤Q t if and only if s ≤P t. Obviously, Q ⊆ P.
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Covering relations

This is an important definition. For two elements s and t in P, we
say that t covers s if s < t and there does not exist a u ∈ P such
that s < u < t. We denote these covering relations by s l t.

Covering relations are important because they let us draw posets!
Formally, we call these drawings Hasse diagrams, and they’re
basically directed acyclic graphs but we understand every edge
points “up”.
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The n-chain returns

Let’s consider the n-chain again, by drawing its Hasse diagram for
n = 4. Obviously, n l n + 1, so we get something like this:

A lot of posets look really cool when we draw them.
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Power sets again

Your turn again! Try drawing the Hasse diagram of ({1, 2, 3},⊆).
We also have a formal term for the poset ([n],⊆): the Boolean
poset, Bn. Be sure to get familiar with this poset, as it’s going to
pop up again and again.
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Chains, in general

I Chains are actually a more general component of posets.

I A chain is a poset that is totally ordered: every element is
comparable. So R and Z are chains.

I A subset C ⊂ P is a chain if every element in it is
comparable, this is the more useful definition.

I We also have a notion of length: the length of a chain C ⊂ P
is `(C ) = |C | − 1.
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Rank and graded posets

The rank of a poset P is the length of its maximal chain:

rankP = max
C⊂P

`(C ).

When every maximal chain (meaning there isn’t a larger chain that
contains it) of P has the same length, we call P a graded poset. If
that length is n, then P is graded of rank n.
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Rank functions

If P is a graded poset of rank n, then there exists a rank function
ρ : P → {1, 2, . . . , n}, which satisfies these special properties:

I If s is a minimal element of P, then ρ(s) = 0.

I If s l t, then
ρ(s) + 1 = ρ(t).

If ρ(s) = i , then we say s has rank i .
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Rank generating functions

Suppose that P is a graded poset of rank n. Then there exists a
rank generating function

F (P, x) =
n∑

k=0

pkx
k ,

where pk is the number of elements in P with rank k .
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Rank generating functions

Can you try finding the rank function and rank generating function
for the following posets?

I The n-chain n.

I The boolean poset Bn.

I This is the other major poset I wanted to talk about: the
Divisor poset Dn. For this poset, we take a positive integer n,
and let the ground set be the positive integer divisors of n.
Then s ≤ t if s|t.
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Antichains

I An antichain is a subset A ⊂ P such that no two elements of
A are comparable.

I Antichains are also called Sperner families, as they have a
very deep connection to Sperner’s theorem in extremal
combinatorics.

I We’ll look at some results related to extremal combinatorics
(Dilworth’s and Mirsky’s theorems) some other time.
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Order Ideals

Definition (Order Ideals)

An order ideal (also called a down set) is a subset I ⊂ P such
that if t ∈ I and s ≤ t, s ∈ I .

I There’s a dual of an order-ideal, called an up-set, where we
replace the s ≤ t condition with s ≥ t.

I For experts, this should remind you of the definition of a
regular ideal.
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A nice problem

Problem

Show that the number of order ideals in P is equal to the number
of antichains in P.

Hint: Argue for a bijection!
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References and places to learn more

I R. Stanley, Enumerative Combinatorics Volume 1.

I One of the best combo textbooks out there, although it’s very
dense and reference-like.

I More of these lectures!
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