> **Posets** A First Look

Pranav Konda

MAST

May 6, 2022

医间面的

÷

K ロ ▶ K (包 ▶ K)

E

[To me](#page-2-0)

医间面的

÷

K ロ ▶ K 何 ▶ K

E

 299

[A Quick Introduction...](#page-1-0)

[To me](#page-2-0) [To what we're doing today](#page-3-0)

つくい

For those of you I haven't met before...

Here's a few things about me:

 \blacktriangleright Hil I'm Pranavl

- \blacktriangleright I'll be a freshman in college this fall.
- \blacktriangleright My favorite math subject is combo!
- \blacktriangleright Check me out at <https://pranavkonda.com>!

But that's enough about me, what you're really here for is the math.

[To me](#page-2-0) [To what we're doing today](#page-3-0)

つくい

Some background about posets and notation

- \blacktriangleright Today we'll be learning about partially ordered sets.
- \triangleright We also call them posets for short.
- \triangleright They have cool connections to other areas of combo, like PIE.
- \triangleright Since there's going to be some slightly advanced theory, let me know if I need to slow down or explain something in more detail.

The set $\{1, 2, \ldots, n\}$ is going to be denoted by $[n]$.

[Basic Definitions](#page-4-0) [Chains and Generating Functions](#page-15-0) [A whole lot of definitions](#page-10-0)

メロトメ部 トメミトメミト

E

 299

[Basic Definitions](#page-4-0)

[Ordering things](#page-5-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

4 . EL 19

 200

Binary Relations

As you probably already know, the Cartesian Product of two sets A and B , $A \times B$, is the set

$$
\{(a,b): a\in A, b\in B\}.
$$

Definition (Binary Relation)

A binary relation R over two sets A and B is a subset of $A \times B$. We think about (a, b) as aRb, where we're relating a to b.

[Ordering things](#page-5-0) [Examples](#page-8-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

(国家) マ 国 家

 200

Posets

Now we're ready to define a poset! A poset is a set P , along with a binary relation \leq that satisfies the following properties:

- Reflexivity: For any $s \in P$, $s \leq s$.
- **Antisymmetry**: If $t \leq s$ and $s \leq t$, then $s = t$.
- **Transitivity**: If $s \le u$ and $u \le t$, then $s \le t$.

Just like regular less-than, $s < t$ indicates that $s \neq t$. Same for greater than signs.

[Ordering things](#page-5-0) [Examples](#page-8-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

 200

Posets

The "crux" of what makes the poset a *partially ordered* set is that for any two elements in P, it's not necessary for $s \leq t$ or $t \leq s$ to hold! We have formal words for this (let $s, t \in P$):

- If $s \leq t$ or $t \leq s$, then we say s and t are **comparable**.
- \triangleright Otherwise, we say s and t are incomparable.

Sometimes, our set and partial order will only have comparable elements, in which case we call it a total order (like (\mathbb{R}, \leq) for example).

[Ordering things](#page-5-0) [Examples](#page-8-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

 200

The *n* chain

- **If** Suppose *n* is a positive integer. Then the set $[n]$ with the regular less-than relation forms a poset, n, which we call the n -chain. It's pretty easy to verify that this satisfies reflexivity, antisymmetry, and transitivity.
- \triangleright We'll see why it's called a *chain* shortly, but we need to define a few things first.

[Ordering things](#page-5-0) [Examples](#page-8-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

∢ ロ ▶ - ∢ 何 ▶ - ∢

澄後 メ君 8

 299

э

Power sets

Your turn to prove something!

Problem

Let S be a set. Prove that $(\mathcal{P}(S), \subseteq)$ is a poset.

[Ordering things](#page-5-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

 200

Isomorphism

As expected with any mathematical object, we have some notion of poset isomorphism, or an order-preserving bijection. We say two posets P and Q are isomorphic if there's some map $\phi : P \to Q$ such that

$$
s\leq t\Longleftrightarrow \phi(s)\leq \phi(t).
$$

Pretty generic definition of isomorphism.

[Ordering things](#page-5-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

 200

Subposets

Subposets are a bit wonky, since there are two ways we can define one. Since we will almost always use only one kind, we're going to go through that.

Definition (Induced subposet)

Let P be a poset. Then Q is an induced subposet of P if for $s, t \in Q$, $s \leq_Q t$ if and only if $s \leq_P t$. Obviously, $Q \subseteq P$.

[Ordering things](#page-5-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

つくい

Covering relations

This is an important definition. For two elements s and t in P , we say that t covers s if $s < t$ and there does not exist a $u \in P$ such that $s < u < t$. We denote these covering relations by $s < t$.

Covering relations are important because they let us draw posets! Formally, we call these drawings Hasse diagrams, and they're basically directed acyclic graphs but we understand every edge points "up".

[Ordering things](#page-5-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

4 0 5

 Ω

The n -chain returns

Let's consider the *n*-chain again, by drawing its Hasse diagram for $n = 4$. Obviously, $n \le n + 1$, so we get something like this:

A lot of posets look really cool when we draw them.

[Ordering things](#page-5-0) [A whole lot of definitions](#page-10-0) [Coverings and diagrams](#page-12-0)

 200

Your turn again! Try drawing the Hasse diagram of $(\{1,2,3\},\subset)$. We also have a formal term for the poset $([n], \subseteq)$: the Boolean poset, B_n . Be sure to get familiar with this poset, as it's going to pop up again and again.

[General chains](#page-16-0) [Generating functions](#page-18-0) [More chain stuff](#page-21-0)

E

∢ ロ ▶ イ 何 ▶

∍ 어서 동어

×.

 299

[Chains and Generating Functions](#page-15-0)

[General chains](#page-16-0) [Generating functions](#page-18-0) [More chain stuff](#page-21-0)

Chains, in general

- \triangleright Chains are actually a more general component of posets.
- \triangleright A chain is a poset that is totally ordered: every element is comparable. So $\mathbb R$ and $\mathbb Z$ are chains.
- A subset $C \subset P$ is a chain if every element in it is comparable, this is the more useful definition.
- \triangleright We also have a notion of length: the length of a chain $C \subset P$ is $\ell(C) = |C| - 1$.

[General chains](#page-16-0) [Generating functions](#page-18-0) [More chain stuff](#page-21-0)

Rank and graded posets

The rank of a poset P is the length of its maximal chain:

$$
\operatorname{rank} P = \max_{C \subset P} \ell(C).
$$

When every maximal chain (meaning there isn't a larger chain that contains it) of P has the same length, we call P a graded poset. If that length is n , then P is graded of rank n .

つくい

[General chains](#page-16-0) [Generating functions](#page-18-0) [More chain stuff](#page-21-0)

Rank functions

If P is a graded poset of rank n, then there exists a rank function $\rho: P \to \{1, 2, \ldots, n\}$, which satisfies these special properties:

- If s is a minimal element of P, then $\rho(s) = 0$.
- If $s \lessdot t$, then

$$
\rho(s)+1=\rho(t).
$$

医单侧 医单侧

 200

If $\rho(s) = i$, then we say s has rank i.

[General chains](#page-16-0) [Generating functions](#page-18-0) [More chain stuff](#page-21-0)

4 17 18

ヨト

 Ω

Rank generating functions

Suppose that P is a graded poset of rank n . Then there exists a rank generating function

$$
F(P,x)=\sum_{k=0}^n p_kx^k,
$$

where p_k is the number of elements in P with rank k.

[Generating functions](#page-18-0) [More chain stuff](#page-21-0)

Rank generating functions

Can you try finding the rank function and rank generating function for the following posets?

- \blacktriangleright The *n*-chain **n**.
- \blacktriangleright The boolean poset B_n .
- \triangleright This is the other major poset I wanted to talk about: the Divisor poset D_n . For this poset, we take a positive integer n, and let the ground set be the positive integer divisors of n. Then $s \leq t$ if s/t .

[Generating functions](#page-18-0) [More chain stuff](#page-21-0)

Antichains

- An antichain is a subset $A \subset P$ such that no two elements of A are comparable.
- \blacktriangleright Antichains are also called **Sperner families**, as they have a very deep connection to **Sperner's theorem** in extremal combinatorics.
- \triangleright We'll look at some results related to extremal combinatorics (Dilworth's and Mirsky's theorems) some other time.

[Generating functions](#page-18-0) [More chain stuff](#page-21-0)

Order Ideals

Definition (Order Ideals)

An **order ideal** (also called a down set) is a subset $I \subset P$ such that if $t \in I$ and $s \leq t, s \in I$.

- \blacktriangleright There's a *dual* of an order-ideal, called an *up-set*, where we replace the $s \leq t$ condition with $s \geq t$.
- \triangleright For experts, this should remind you of the definition of a regular ideal.

ヨメ イヨメ

4 . EL 19

[General chains](#page-16-0) [Generating functions](#page-18-0) [More chain stuff](#page-21-0)

A nice problem

Problem

Show that the number of order ideals in P is equal to the number of antichains in P.

Hint: Argue for a bijection!

4日下

∍

 \sim \prec Пb.

э

∍

 Ω

[Generating functions](#page-18-0) [More chain stuff](#page-21-0)

References and places to learn more

- ▶ R. Stanley, Enumerative Combinatorics Volume 1.
- \triangleright One of the best combo textbooks out there, although it's very dense and reference-like.
- \blacktriangleright More of these lectures!

4 0 5